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Velocity and surface measurements in three turbulent hydraulic jumps are analysed
in detail. The velocity measurements were obtained in a hydraulic flume using laser-
Doppler velocimetry and the surface measurements were obtained using capacitance
wave gauges. The purpose is to extract information about the flow field and the
stresses in the jumps and the geometrical extension of the recirculating region called
the roller. To achieve this we first ensure that the overall continuity and momentum
conservation for the flow is satisfied. This includes comparison with the classical
results for hydraulic jumps. It is found that deviations from uniform-depth Reynolds-
averaged velocities and hydrostatic pressure give small but important corrections
to the conservation equations. Careful evaluation of the velocity measurements in
conjunction with the continuity equation makes it possible to determine the lower
limit of the recirculating roller region. Measurements of the Reynolds stresses are
analysed, in particular in the roller region, and a simple model established that
illustrates the mechanisms of the flow in the roller and predicts well the stresses
along the lower limits of the roller. In combination with the analysis of the vorticity
distribution, this leads to a qualitative description of the processes for the generation
of vorticity. It suggests both similarities and differences from the hypothesis of the
existence of a shear layer inside the jump. Similarity profiles are developed for the
variation of stresses, vorticity, and eddy viscosity along the lower limit of the roller.
Finally, the total angular momentum for the jumps is examined and compared to the
analysis of Hornung, Willert & Turner (1995).

1. Introduction
Hydraulic jumps are among the most puzzling flow phenomena that occur in

nature under steady, one-directional flow conditions. They are important as energy
dissipators in connection with engineering structures in rivers. In addition, the flow in
hydraulic jumps has many similarities with waves breaking both in deep water and
in the surf zone on a beach – an aspect which has further increased the interest in
the phenomenon. Over the years, many studies have been published of the various
mechanisms active in hydraulic jumps. Nevertheless, there are still details such as the
mechanisms behind the distribution of vorticity and the flow in the violently turbulent
front of the jump (the so-called ‘roller’) that are not fully understood.

It has been difficult to obtain reliable measurements of the flow inside the jump,
which, particularly in the turbulent front, usually includes strong entrainment of
air bubbles. One of the pioneering studies by Rouse, Siao & Nagarathnam (1959)



26 I. A. Svendsen, J. Veeramony, J. Bakunin and J. T. Kirby

bypassed this problem by conducting the measurements in a wind tunnel in which
the free surface was replaced by a smooth wall with the shape of the mean water
surface in a jump. Though this approach also removed the important effect of gravity
and surface-penetrating turbulence, the study gave useful results and insights and its
careful analysis of the measurements set the standards for many later investigations.
Rouse et al. used the then novel technique of hot-wire anemometry. Later, improved
versions of this experimental technique made it possible to obtain measurements in
real jumps in water (see Resch & Leutheusser, 1972; Resch, Leutheusser & Coantic
1976).

Laser-Doppler velocimetry has also been used both in regular hydraulic jumps
(Kirby, Bakunin & Huq 1995) and in the closely related problem of breaking waves
trailing hydrofoils (Battjes & Sakai 1981). Finally, the technique of particle image
velocimetry (PIV) was pioneered for waves breaking behind an airfoil by Duncan
(1981) (who did not have the signal processing tools of today) and later used for
the same problem by Lin & Rockwell (1995), and for the flow far downstream of a
hydraulic jump by Hornung, Willert & Turner (1995). Dabiri & Gharib (1997) also
uses the digital PIV technique to study viscocity and capillary dominated jumps.

Recent years have also seen increasingly realistic steps toward numerical modelling
of the flow in hydraulic jumps. Madsen & Svendsen (1983) presented a four variable
model of the jump based on an extended version of the nonlinear shallow-water
equations. The model, which was extended to unsteady bores by Svendsen & Madsen
(1984), used parameterized velocity profiles and a simplified k− ε turbulent closure to
determine the shape of the free-surface variation and the velocity parameters inside
the jump. A somewhat analogous approach but without a turbulence closure was
used by McCorquodale & Kalifa (1983).

Lately, more sophisticated modelling techniques have been used which include
two equation closure models to monitor the development of the turbulence and the
volume of fluid method (VOF) to describe the flow. Examples are Long, Steffler &
Rajaratnam (1991), Quingchao & Drewes (1994), and Bowles & Smith (1992), some of
which address various special cases such as submerged jumps or capillary influenced
circular jumps. Yeh (1991) discusses the mechanisms for generation of vorticity in
bores and finds that a gradient in fluid density is required.

In a very simplified model, Hornung et al. (1995) recently analysed the angular
momentum balance in an ordinary hydraulic jump. Of particular interest is the
contribution to the angular momentum from the non-hydrostatic pressure.

The purpose of the present paper is to extract information about the basic hy-
drodynamics of the flow inside hydraulic jumps. This is obtained through analysis
of the high-accuracy measurements obtained by Bakunin (1995) combined with the-
oretical modelling. In order to achieve this, we first verify that the measurements
satisfy the equations for conservation of mass and momentum. Through this process
we determine the (constant) volume flux of the jumps and the Froude number. A
generalized version of the classical formula relating Froude number and depth ratio
for the jump is derived and the effect that non-uniform velocity profiles and deviation
of hydrostatic pressures have for the momentum balance is analysed.

Particular emphasis is given to the flow in the recirculating roller region at the
turbulent front of the jump. A simplified model for the flow and stresses in the
roller is developed, and information about the vorticity distribution in the jump is
obtained. Comparison with the measured shear stresses at the lower edge of the
roller suggests that the roller flow may be more complicated than suggested by the
simplified estimates for those stresses presented by e.g. Deigaard & Fredsøe (1989).
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Figure 1. Sketch of experimental set-up and definition of parameters.

The somewhat puzzling issue of the angular momentum balance was raised in
Hornung et al. (1995). We apply the experimental and theoretical results of this paper
to analyse this in detail and it is found that because the basic assumptions of Hornung
et al. are not satisfied, their conclusions must also be modified, in particular with
respect to the need for a particular amount of (negative) vorticity downstream of the
jump.

The paper is organized as follows. The experimental set-up for the measurements
is briefly described in § 2. Section 3 describes the initial analysis of the experimental
results and establishment of the Froude number for the three jumps and § 4 analyses
the momentum balance in the jump. Both the overall and the local balance are
discussed. In § 5, the flow and stresses in the roller region are analysed and a simple
model established particularly for the stresses at the lower edge of the roller. Section
6 gives the results for the vorticity in the jump and a discussion of the mechanisms
for generation of vorticity, and in § 7 the angular momentum balance is analysed.
Further discussions and conclusions end the paper.

2. Description of the measurements
The measurements used in the present paper were reported by Bakunin (1995)

and the experimental set-up is shown schematically in figure 1 which also shows the
definition of the basic geometrical parameters for the jumps. In the following, the
depth h1 refers to the minimum depth in front of the jump where the depth-averaged
velocity is U1, h0 is the measured depth at x = x0 and h2 is the depth sufficiently far
downstream of the jump for the conditions to be largely uniform.

The jumps were generated downstream of an undershot weir in a closed circuit
hydraulic flume by adjusting the discharge, the downstream overflow weir, and the
height of the undershot weir. The inclination of the tank was set so that the down-
stream flow became uniform. The bottom of the tank was made of smooth steel and
the walls of glass. The downstream overflow weir was positioned approximately 4.3 m
(or 40 times h2) downstream of the last measuring position at x/h0 = 8.0.

Measurements were taken with a two-dimensional laser-Doppler velocimeter placed
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Jump h0 U0

number (m) (m s−1)

1 0.072 0.9483
2 0.064 1.0597
3 0.059 1.1621

Table 1. Measured identification parameters for the jumps.

outside the glass walls and operated in back-scattering mode. The time variations of
the horizontal (u) and vertical (w) velocities were obtained only along the centreline
of the channel. The signal was processed using burst spectrum analysers, leading to
an average data rate of 1000 Hz, which was subsequently bin-averaged to a 200 Hz
rate.

The surface elevation was measured simultaneously by means of a capacitance
wave gauge, sampled at 100 Hz. The diameter of the wire was 1 mm, which is believed
to be small enough to make the surface disturbances generated around the wire by
the wire itself negligible in comparison to the elevations in the jump. The vertical lines
in figure 1 indicate verticals along each of which a large number of measurements
were taken. In the following analysis, the origin of the horizontal x-axis is placed at
the mean position of the toe of the turbulent front and the distances of the measuring
sections from the toe are indicated in the figure. Further details of the experimental
set-up may be found in Bakunin (1995). The mean position of the toe was determined
by measuring the average distance of the toe from the measuring station at x0.

Finally, it is mentioned that all measurements were taken along the centreline of
the tank. Though no attempts were made to record the variations across the tank,
visual observations indicate that the flow was uniform in the cross-channel direction.
Thus, for symmetry reasons, lateral derivatives of the flow variables, including that
of the intensity of the lateral turbulence fluctuation v′, are therefore assumed small
enough to be neglected.

Detailed measurements were performed for three different jumps. The measured
identification parameters for the jumps (the depth h0 at the only measuring section
in the front of the jump, and the mean velocity U0 at h0) are given in table 1.

As will be seen in § 3, the jumps correspond to relatively small values of the
Froude number (F = 1.38, 1.46, 1.56). These small values were chosen because they
correspond to ratios between maximum and minimum depths in the jumps that are
similar to the depth ratios between trough and crest for surf zone waves. Hence,
such jumps provide the best similarity with nearshore breaking waves which was an
important part of the motivation for the experiments. For completeness we notice that
these values were large enough to make all the jumps turbulent. Only the smallest of
the jumps showed a weak tendency of undular behaviour downstream of the turbulent
front.

The scale of the experiments was also chosen to be small enough to minimize
the entrainment of air bubbles at the turbulent front, which facilitated the LDV
measurements and made it possible to measure well into the surface roller. As
indicated by Banner & Phillips (1974) and later by Peregrine & Svendsen (1978) the
generation of turbulence at the front of a hydraulic jump or breaking wave can occur
without air entrainment. On the other hand, the jumps were large enough and the
turbulence strong enough to render capillary forces negligible.
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3. Volume flux and Froude number
The first goal is to ensure that the interpretation of measured velocities satisfies the

conservation laws for mass and momentum throughout the jump. In order to achieve
this, an analytical curve-fit is developed for the measured horizontal velocities along
each of the verticals in the dataset. The verticals were divided into four sections and
the following approximations used:

(a) The wall region: from the bottom (z = 0) to the first measurement location in
the vertical, z = z1 (∼1 mm above the bottom), we used

u(z) = u1

(
z

z1

)1/7

. (3.1)

(b) In the boundary layer z1 6 z 6 δ, where δ is determined as the displacement
thickness:

δ =

∫ h

0

(
1− u

U

)
dz, (3.2)

we use the approximation

u = u1 + C log

(
z

z1

)
, (3.3)

where C is found by a least-squares fit to the measured values in the boundary layer.
(c) A middle region for δ < z < z2, where the velocities are nearly constant. In this

region, which constitutes the largest part of the depth, a fourth-order polynomial was
used in a least-squares fit subject to continuity constraints in velocity and velocity
gradients at the boundaries to regions (b) and (d).

(d) The upper region z2 < z < h includes the roller region. This is the region
with the largest velocity variations and a third-order polynomial was used. As men-
tioned, the constraints in the least-squares fit were continuity in velocity and velocity
gradient at the connection to region (c) and zero gradient at the mean free surface
corresponding to zero (or small) shear stress there.

The original measurement values and the velocity profiles curve-fitted to the data
as indicated are shown in figure 2. The measured position of the mean free surface
(marked with a + is also shown). The lower limit of the roller, which is to be
determined later, is marked with circles.

It can be seen that the curve-fitted profiles represent the measurements with high
accuracy. In the following, this is further verified by using the measured velocities to
determine the mean volume flux Q in the jump. The local (in x) value of the volume
flux Q is defined as

Q =

∫ B/2

−B/2

∫ h

0

u dz dy, (3.4)

where B is the total width of the channel. No measurements of the lateral variation
of the velocities were taken during the experiments, but it is found that the boundary
layers along the glass sidewalls gave non-negligible reductions in the total volume
flux. This effect was compensated for by assuming that the sidewall boundary layers
are similar to the boundary layer along the bottom which was a smoothly painted
steel wall. Hence, the integral over the cross-section in (3.4) was evaluated as

Q = (B − 2δ)

∫ h

0

u dz, (3.5)
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Figure 2. •, Measured horizontal velocities, and —–, curve-fits (solid line) versus z/h0 for the values
of x/h0 where measurements were taken for all three jumps. ◦, The calculated lower limit of the
dividing streamline; +, the measured mean water level at that location.

where δ was taken as the value determined from the vertical profiles. Figure 3 shows
the variation of the total discharge in the three jumps found by this procedure. We
see that for each jump the figure for the discharge stays within ± 0.05% of a mean
value. Knowing that Q is a constant, we therefore define the mean volume flux Q as

Q =
1

L

∫
L

Q dx, (3.6)
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Figure 3. Variation for computed volume fluxes Q(x) for the values of x/h0 where measurements
were taken. +, F = 1.38; ×, F = 1.46; ◦, F = 1.56.

where L is the length of the jump. In the following, that mean value is used as the
discharge Q for each jump. These values are

Jump number 1 Q = 20.80 l/s

Jump number 2 Q = 20.54 l/s

Jump number 3 Q = 20.32 l/s

With Q known, it is possible to calculate the Froude number

F =
Q

A
√
gh

(3.7)

for the jump, where A = hB. However, evaluation of F requires specification of h. In
the experiments, the jumps were generated behind an undershot weir. The contraction
of the cross-section at the weir created a weak depression of the water surface which
resulted at a minimum water depth at some distance downstream of the weir (see
figure 1). From this minimum position, the water surface again curved a little upward
toward the toe of the jump, so that at the actual toe of the jump the surface had
a non-zero slope. The measurements ‘at the toe’ were taken at distances of 10 mm,
10 mm and 22 mm, respectively, upstream of the mean position of the toe for jumps
1, 2 and 3, respectively. The water depth at that position was h0. The slope on the
mean water surface at this first measurement section can be judged by the values of
the vertical mean velocities w at the point. They are shown in figure 4. We see that,
even at the surface, the vertical velocity w at section x0 is small in comparison to the
horizontal velocity shown in figure 2.

Whereas the actual position where measurements were taken in front of the jump is
somewhat arbitrary, the only well-defined depth in front of the jump is the minimum
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Figure 4. •, Measured values of the vertical velocities w versus z/h0 for the values of x/h0 where
measurements were taken; —–, w = U(dh/dx).

depth h1 which occurs approximately midway between the weir and the toe. In the
following, h1 is used as the reference depth for each jump. As shown in § 4, this makes
it possible to determine the deviation from hydrostatic pressure in the front of the
jump and the effect this has on the momentum balance. Unfortunately, the depth h1

was not measured directly. It can be calculated, however, by assuming that between
the weir and the toe the mean water surface can be approximated by a second-order
Taylor expansion of the surface elevation around the minimum depth at x1. Since
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Jump h0 us ws Rs h1

number (m) (m s−1) (m s−1) (m) (m)
ξ =

h2

h1 α1 α2 κ1 κ2

1 0.072 0.98 0.1275 1.087 0.063 1.565 1.0129 1.0194 1.063 1.00
2 0.064 1.12 0.08 2.437 0.060 1.680 1.0127 1.0260 1.037 1.00
3 0.059 1.19 0.04 5.894 0.057 1.889 1.0124 1.0360 1.017 1.00

Table 2. Values of h0, us ws Rs, h1, ξ, α1, α2, κ1 and κ2.

[dh/dx]x1
= 0 this expansion can be written as

h(x) = h(x1) +
(x− x1)

2

2Rs
, (3.8)

where Rs = [d2h/dx2]−1 is the radius of curvature of the surface at x1. Considering
the relatively small correction (1.7% – 6.3% in the momentum balance, see table 2)
that the non-static pressure gives raise to, it is expected that this is a sufficiently
accurate approximation. Rs and x1 will be determined from the measurements at x0

as follows.
The surface slope dh/dx at the first measuring section x0 is determined by differ-

entiation of (3.8) which gives the value(
dh

dx

)
x0

=
x0 − x1

Rs
at x = x0. (3.9)

Since the free surface is a streamline, we also have(
dh

dx

)
x0

= ws/us. (3.10)

Here, us and ws denote the surface values of u and w. Then the radius of curvature
Rs can be determined by combining (3.9) and (3.10) as

Rs =
x0 − x1

ws/us
, (3.11)

and we thus obtain

h1 = h0 − 1
2
(x0 − x1)

ws

us
. (3.12)

In calculating h1, we have used a best fit for the measured values for us and ws. The
numbers used are shown in table 2. The values of h0, Rs and h1 are also shown.

Based on the values of Q and h1, we obtain the values of F(Q) shown in table
3. The table also shows the Froude number F0(Q) which is the only F-value we
can obtain by using the measured velocities and depth h0 at x0 directly. We see
that the two F-values differ substantially, especially for jump 1, which indicates the
importance of the difference between h0 and h1.

4. Momentum balance in the jump
4.1. Overall momentum balance

Determination of the correct Froude number is also of interest in connection with
the overall momentum balance in the jump, which gives the connection between the
Froude number and the conjugate depth h1 and depth h2, the depth far downstream
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Jump
number F((3.7) with h1) F0((3.7) with h0) F′(4.1) F(4.8)

1 1.378 1.128 1.416 1.371
2 1.464 1.326 1.500 1.472
3 1.562 1.484 1.652 1.621

Table 3. Measured and calculated Froude numbers for the jumps.

of the jump. In the classical theory, the assumptions of uniform-depth velocities and
hydrostatic pressure at both h1 and h2 lead to the well-known expression

F′2 = 1
2
ξ(ξ + 1) (4.1)

where ξ ≡ h2/h1. The results for F′ determined from the calculated value of h1 and
h2 measured at x/h0 = 8 are also given in table 3. These values again differ from the
value of F determined by (3.7). The reason is that the two basic assumptions behind
(4.1) are not satisfied. The velocity u is not uniform over depth and the pressure is
not hydrostatic, in particular not at x1. To determine the correct expression for the
momentum balance, we introduce the Reynolds decomposition

u = ũ+ u′, ũ =
1

T

∫ T

0

u dt, (4.2)

w = w̃ + w′, w̃ =
1

T

∫ T

0

w dt, (4.3)

where T is the length of the time series. The momentum equation for constant density
in the general form for a control volume covering vertical sections at h1 and h2 then
becomes∫

A1

(ρ(ũ2 + ũ′2) + p) dA−
∫
A2

(ρ(ũ2 + ũ′2) + p) dA−
∫ x2

x1

(B + 2h)τb dx = 0 (4.4)

where τb is the bottom friction. In the following, we will omit the (̃) over the ensemble
averaged velocity except where ambiguous. We also assume that ρ is constant and
again we assume that the sidewall friction is equal to the bottom friction.

Introducing momentum and pressure correction factors defined by

α =
A

Q
2

∫
A

(u2 + ũ′2) dA, (4.5)

and

κ =
2

ρgh2B

∫
A

p dA, (4.6)

respectively, (4.4) can be written

α1

Q
2

gh3
1B

2
+ 1

2
κ1 = α2

Q
2

gh3
1B

2

1

ξ
+ 1

2
κ2ξ

2 + τ′, (4.7)

where τ′ ≡ (2/gBh2
1)
∫ x2

x1
(B + 2h)τ dx. Solving with respect to F2 = Q

2
/gh3

1B
2 then
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gives

F2 = 1
2
ξ
κ2ξ

2 − κ1 + τ′

α1ξ − α2

. (4.8)

We notice here that setting α1, α2, κ1, and κ2 = 1 and τ′ = 0 reduces (4.8) to (4.1) as
should be expected. Later, it will be shown that τ′, the contribution from the bottom
and sidewall friction, is negligible for the present measurements.

Evaluation of F from (4.8) requires determination of the α and κ coefficients. The
α terms are determined directly from the definition (4.5) assuming the integration
across the channel can be approximated by∫

A

(u2 + ũ′2) dA ∼ (B − 2δ′)
∫ h

0

(u2 + ũ′2) dz, (4.9)

where δ′ is the momentum thickness determined for the vertical profiles and defined
by

δ′ =

∫ h

0

u

U

(
1− u

U

)
dz (4.10)

The curve-fitted velocities are used for the evaluation of (4.9) and the values are
shown in table 2.

The pressure coefficient κ1 is determined by realizing that

p(z) = ρg(h− z)− ρ(w2 + w̃′2) +
∂

∂x

[∫ h

z

ρ(uw + ũ′w′)dz
]
. (4.11)

The measurements show that in (4.11) the contributions to p from the turbulent

fluctuations are negligible. Figure 9 shows the values of ũ′w′.
In order to determine p(z) at x1, we use the observation (figure 4) that at x0 the

vertical velocity w varies almost linearly from its zero value at the bottom to the
value udh/dx at the surface. It is assumed that this applies to the entire region in
front of the jump, and that for this calculation we can use the depth averaged value
U of u, so that we can determine w from

w

U
=
z

h

dh

dx
. (4.12)

In accordance with (3.8) we also have

dh

dx
=
x− x1

Rs
, (4.13)

where Rs is given by (3.11). Introducing the dynamic pressure pD defined by

pD = p− ρg(h− z), (4.14)

and substituting (4.11) for p and (4.12) for w, we can write pD as

pD(z) = −ρU2 z
2

h2

(
dh

dx

)2

+
d

dx

(
1

2h
ρU2(h2 − z2)

dh

dx

)

= −ρU2 z
2

h2

(
dh

dx

)2

+ 1
2
ρ
Q

2

B2

d

dx

(
h2 − z2

h3

dh

dx

)
. (4.15)
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We then obtain, after some algebra∫ h

0

pD(z) dz = 1
3
ρ
Q

2

B2
h

d

dx

(
1

h

dh

dx

)
, (4.16)

and hence from (4.6)

κ = 1 + 2
3

Q
2

ghB2

d

dx

(
1

h

dh

dx

)
. (4.17)

At h1 we have dh/dx = 0 and, as (4.12) shows, d2h/dx2 = R−1
s so that κ1 becomes

κ1 = 1 + 2
3
F2 h1

Rs
. (4.18)

It is emphasized that this result assumes that (4.12) applies, which we see from figure
4 is not the case in the central part of the jump. This will be discussed in further detail
later in connection with the analysis of the momentum variation between sections 1
and 2.

In the calculation of κ we have used F from the measurements using (3.7). The
values of κ1 calculated from (4.18) are also shown in table 2.

For the section at h2(x/h1 = 8), we have no information from which κ2 can be
determined. However, since this is far downstream of the jump where dh/dx is close
to zero, we assume κ2 ∼ 1.0.

The values of the correction factors along with the measured values of ξ (also
listed in table 1) are then used to determine F2 from (4.8) and these values are also
given in table 2. We see that these results forF are in much closer agreement withF
values determined directly from the measurements using (3.7). The results for jumps
1 and 2 are, in fact, remarkably similar. The agreement between F(4.8) and F(3.7)
gives basis for expecting that (4.8) includes the major mechanisms active in the jump.
On the other hand, the significant difference between these values and F′ determined
from the classical expression (4.1) indicates that effects of non-uniform velocities and
non-hydrostatic pressure are important.

In all, these results underline the importance of the seemingly small deviations in
the experiments from the ideal conditions usually assumed in classical hydraulics.

4.2. Momentum variation inside the jump

In general, we should expect the momentum flux M to be constant through all vertical
sections of the jump.

As an introductory consideration, it is noted that, when integrating over depth
to determine the momentum flux, the turbulent fluctuations of the free surface are

included so that the instantaneous depth is h(x, t) = h̃(x) + h′(x, t). A related problem
has been discussed recently by Brocchini & Peregrine (1996) for the problem of
defining mean shorelines on beaches with wave action. Hence, the velocity part of the
momentum flux becomes∫ h̃+h′

0

˜(ũ+ u′)2 dz =

∫ h̃

0

(ũ2 + ũ′2) dz +

∫ h̃+h′

h̃

˜(ũ+ u′)2 dz. (4.19)

Here, the last term can be approximated by 2ũũ′h′ + h̃′u′2 where the value of the
variables are to be taken near the surface. Not enough information is available to
assess precisely the value of these terms. However, we know that h′rms � h̃ even near
the toe of the roller. Furthermore, u′rms at the surface is smaller than u′rms near the lower
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edge of the roller which gives the main contribution to the turbulent part of the first

integral in (4.19). Hence, it is expected that these terms will be smaller than
∫ h̃

0
ũ′2 dz,

which we will see shortly give negligible contributions to the overall momentum flux.
Hence, in the following, we omit the terms due to the turbulent fluctuations of the
free surface.

Omitting again the (̃) over the turbulent averaged quantities, except when ambigu-
ous, we can write the total momentum flux as

M(x) =

∫ h(x)

0

ρ(u2 + ũ′2) dz +

∫ h(x)

0

p dz (4.20)

where ρũ′2 is the turbulent normal stress. We use the term M1 for the momentum flux
through the section at h1 and M(x) should then satisfy

M(x) = M1 −
∫ x

x1

(
1 +

2h

B

)
τw dx. (4.21)

Here, the wall friction τw has been determined by a simple friction factor formula

τw = 1
8
ρfU2, (4.22)

where f is the friction coefficient. Since the roughness of both bottom and sides of
the flume is very small, f is set to 0.01 (see e.g. Henderson 1966).

Estimates of the contribution from the wall shear stresses show that the τw-term
in (4.21) is O(10−4ρU2h1) for all three Froude numbers. Hence, the wall friction is
negligible in comparison to the other contributions to M.

For the calculation of M, the pressure p(z) is determined from (4.11). In that

expression, both w and w′ were measured directly and so was uw and ũ′w′. The

contribution to p from ũ′w′ is small but that is not the case for uw near the front of
the jump. The total contribution from p can be written∫ h(x)

0

p dz = 1
2
ρgh(x)2−

∫ h

0

ρ(w2 +w̃′2) dz+

∫ h

0

d

dx

(∫ h

z

(ρuw + ũ′w′) dz

)
dz. (4.23)

Here, the inner integral in the last term can be evaluated directly from measured
quantities, but only along the verticals where measurements were taken. In order to
obtain the x-derivatives in that term, spline approximations were developed for the

values of the integral of uw + ũ′w′ in (4.11).
In figure 5, the contribution from the main terms in (4.20) with (4.11) substituted,

are plotted for the x positions where measurements were taken. We see that by far
the most important terms are the u2 and the p contributions, whereas the effect of the

turbulent normal stresses is only about 1%. The ũ′w′ contributions to the pressure
variation turn out to be small. On the other hand, the w2 and the uw contributions
to p(z) are of some importance, in particular in the roller region. All those terms are
included in the p contribution in the figure.

The values of M(x) itself are also shown and we see that M is constant to within
about 5%, the largest errors occurring in the roller region.

A possible reason for the inaccuracies in M is associated with the fact that the
measurements of h(x) play an important role in the results for M, and there is no
information as to how the capacitance wave gauges function for a surface with large
turbulent fluctuations, as in the front of the jump.
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Figure 5. Calculated momentum flux M(x)/M2 for the values of x/h0 along the jump where
measurements were taken. �, Total momentum; ×, pressure contribution; ◦, velocity contribution;
+, turbulent normal stresses.

Hence, for all practical purposes, the momentum flux M may be approximated by

M = ρα(x)
Q2

h(x)
+ 1

2
ρgκ(x)h(x)2, (4.24)

where α(x) and κ(x) represent the local values of the momentum and pressure
correction factors defined by (4.5) and (4.6), respectively. The values of α(x) and κ(x)
found by the procedure described above are shown in figure 6. It is emphasized that
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where measurements were taken.

whereas the α(x)-values in this are fairly accurate, various checks show that the values
of κ(x) are somewhat less accurate.

It is essential to the connection to breaking waves to realize that (α − 1) and
(κ − 1) represent the difference between the actual flow and the flow determined
from a nonlinear shallow water (NSW) approximation, which would be a model with
uniform velocity and hydrostatic pressure distribution everywhere. This difference is
obviously generated by the turbulent front with the roller, in addition to the vertical
accelerations represented by the curvature of the streamlines. The NSW equations
conserve mass, momentum and energy, but the momentum flux anywhere between
sections 1 and 2 is smaller than the momentum flux at 1 or 2. The momentum deficit
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∆M defined by
∆M = M −MNSW , (4.25)

is therefore determined as

∆M = ρ

(
(α− 1)

Q2

h(x)
+ 1

2
g(κ− 1)h(x)2

)
. (4.26)

The ∆M is generated by the breaking front and is just large enough to make
M constant through the jump and hence prevent the front from steepening further.
Conversely, the momentum deficit means that fronts in the NSW models steepen until
they become vertical (‘breaking’ occurs, but at that point the underlying assumptions
for the equations are of course no longer valid). It was shown by Svendsen & Madsen,
(1984) that adding a ∆M to the NSW equations stabilizes the fronts and extracts
energy from the motion. The principle of artificially adding ∆M has been used by
Basco & Svendsen (1984) who specified an α(x) distribution to the NSW equations
and by Schäffer et al. (1993) to establish a Boussinesq model for breaking waves.

The variation of ∆M determined from the measurements is shown in figure 7
along with the surface elevation ζ. The horizontal coordinate is x/h0 and we see that
although ∆M has its maximum close to the toe and inside the roller region, it remains
large much further downstream of the end of the actual roller.

It is also useful to discuss how the approximations introduced by Hornung et al.
(1995, hereinafter referred to as H95) differ from the results found above. H95 uses
the assumption that w/U varies linearly from the bottom to the surface for all vertical
sections throughout the jump. As the measurements show, these assumptions do not
hold in general. The major deviation comes from the fact that, in the roller region,
the surface value of u differs substantially from the depth averaged velocity U (see
figure 4). The consequence is that the pressure correction factor, implied by Hornung’s
assumptions, which is given by (4.17), deviates from the value of κ determined from
the pressure contributions that we calculate directly from (4.11).

5. Analysis of the flow in the roller
The accurate curve-fits for the horizontal velocity profiles combined with the

information about the volume flux in the jump make it possible to determine the
lower limit of the roller, because over the roller the net volume flux is zero. Hence,
the height hr of the roller above the bottom satisfies the equation

Q =

∫ hr

0

u dz. (5.1)

The thickness of the roller is accordingly given by

e = h− hr. (5.2)

The values of e(x) found this way have been used to indicate the lower boundary of
the roller (◦ in figure 2).

An approximate value for the length `r of the roller can be obtained by interpolation
between the verticals. Figure 8 shows that if we, based on trial and error, consider
the variation of e(x)/h2

√
ξ versus x/`r there is a reasonable similarity for all three

jumps. It is interesting to note that the roller ends well before the depth reaches its
maximum downstream value (see § 7).

Another important aspect of the flow is the turbulent stresses generated. The

measured data provide information for ũ′iu′j for all the same points for which mean
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velocities were obtained. Figure 9 shows the measured values of ũ′w′ and figure 10

show the values of (ũ′2)1/2 and (w̃′2)1/2. As could be expected, the stresses are partic-
ularly large in the region underneath and inside the roller. Although measurements
were not obtained from the uppermost part of the roller itself, we can get a fair
estimate of the τyx-variation by assuming that the shear stresses along the mean water
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surface are close to zero. An analysis of the momentum balance inside the roller can
further illustrate the details of that part of the flow.

For this purpose, we consider the section of the roller shown in figure 11. The upper
boundary is the mean water surface, the lower is assumed to be a mean streamline
inside the roller. n, s are local coordinates, s being along the dividing streamline
that forms the lower boundary at the roller. η is the thickness of the roller in the
n-direction. It is assumed that η is much smaller than the length of the roller. This is
reasonably supported by figures 7 and 8 from which we can estimate that the ratio
emax/lr is approximately 0.15–0.22. It is also assumed that either the curvature of the
dividing streamline is small (as at the centre of the roller) or the momentum flux is
small (as at the ends of the roller) to the extent that we can disregard the gradients of
the mean momentum fluxes in the mean streamline direction in comparison to other
contributions to the momentum balance. The same applies to the gradients of the
turbulent momentum fluxes. Analysis of the measurements, where they are available
inside the roller, indicated that this is indeed a valid assumption. It is noted from
comparison of the figures for the mean velocities and the turbulent fluctuations that,
in the roller region, the velocity fluctuations are at least of the same magnitude as the
mean velocities, which implies that the instantaneous flow can change direction as in
oscillatory flow. Yeh & Mok (1990) discussed the flow in the roller in more detail.

The total velocities in the n, s directions are (vn, vs) which we divide into a Reynolds
averaged and a fluctuation component by

vα = ṽα + v′α, (5.3)

where α (and β) are used to represent n, s. The total stresses including momentum
fluxes are (σnn, σns, σss), which may be written

σαβ = −pδαβ + ταβ = −pδαβ − ρṽαvβ. (5.4)
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Substituting (5.3) into (5.4), this can also be written

σαβ = −pδαβ − ρ(ṽαṽβ + ṽ′αv′β). (5.5)

The positive directions of the stresses are indicated in figure 11.
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For steady flow, the conservation of momentum for a control volume between the
surface and the variable level n is then
n-direction:

−ρg(η − n) cos α− σnn +
∂

∂s

∫ η

n

σns dn = 0, (5.6)

s-direction:

−ρg(η − n) sin α+
∂

∂s

∫ η

n

σss dn− σns = 0. (5.7)
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It is consistent with the assumption about slow horizontal variation of the flow in
the roller to assume ṽn = 0. Using (5.5) we then obtain from 5.6 and (5.7)
n-direction:

p(n) = ρg(η − n) cos α− ρṽ′2n +
∂

∂s

∫ η

n

ρṽ′nv′s dn, (5.8)

s-direction:

σns = −ρg sin α(η − n)− ∂

∂s

∫ η

n

(p− ρ(ṽs
2 + ṽ′2s )) dn. (5.9)

Here, p can be eliminated by integrating (5.8) from n to the surface. As mentioned
above, it turns out from analysis of the measurements that we can disregard the
gradients of the momentum fluxes in the s-direction, which means the last term in
(5.8) is small. We therefore obtain∫ η

n

p dn ' 1
2
ρg cos α(η − n)2 − ρ

∫ η

n

ṽ′2n dn, (5.10)

which substituted into (5.9) yields

σns ' −ρg
[
sin α(η − n)− 1

2

∂

∂s
cos α(η − n)2

]
− ρ ∂

∂s

∫ η

n

(ṽs
2 + (ṽ′2s − ṽ′2n)) dn. (5.11)

The measurements also show, however, that in the roller ũ′2 ∼ w̃′2 (see figure 10) so
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that the expression for σns simplifies to

σns ' −ρg
[
sin α(η − n)− 1

2

∂

∂s
cos α(η − n)2

]
− ρ ∂

∂s

∫ η

n

(ṽs
2) dn. (5.12)

The stresses in the n, s directions can be expressed in terms of the Reynolds stresses
τij in the x, z directions (which are the measured Reynolds stresses) by the relations

σnn = −p+ τxz sin 2α− 1
2
(τxx − τzz) cos 2α+ 1

2
(τxx + τzz), (5.13)

σns = 1
2
(τxx − τzz) sin 2α+ τzx cos 2α, (5.14)

and similarly by replacing α by α+ 1
2
π

σss = −p− τxz sin 2α+ 1
2
(τxx − τzz) cos 2α+ 1

2
(τxx + τzz). (5.15)

The τxx, τzz and τxz are given by τij = −ρũ′iu′j . Hence, we can write (5.13)–(5.15) as

σnn = −p− ρũ′w′ sin 2α+ 1
2
ρ(ũ′2 − w̃′2) cos 2α− 1

2
ρ(ũ′2 + w̃′2), (5.16)

σns = − 1
2
ρ(ũ′2 − w̃′2) sin 2α− ρũ′w′ cos 2α, (5.17)

σss = −p+ ρũ′w′ sin 2α− 1
2
ρ(ũ′2 − w̃′2) cos 2α− 1

2
ρ(ũ′2 + w̃′2), (5.18)

where again ũ′2 ∼ w̃′2 so that

σnn = −p− ρũ′w′ sin 2α− ρũ′2, (5.19)

σns = −ρũ′w′ cos 2α, (5.20)

σss = −p+ ρũ′w′ sin 2α− ρũ′2. (5.21)

Combining (5.19) and (5.8) and again neglecting the ∂/∂s-term, we see that p can
be written

p = ρg(η − n) cos α− ρũ′w′ sin 2α− ρũ′2, (5.22)

which shows that in the roller we do not have simple hydrostatic pressure based on
the vertical thickness of the roller as assumed by e.g. Deigaard & Fredsøe (1989).

Though the first term in (5.12) is the largest, it turns out that all three terms
contribute to the result, the ∂/∂s terms in particular in the sections close to the ends
of the roller where the thickness varies more rapidly.

Results from calculations with (5.12) for the variation in the n-direction of σns/ρU
2
1

(where U1 is the mean velocity at h1) are shown in figure 12. The ordinate is n/η and
we see that the predicted values are close to the measured, which are marked by ◦.

It is interesting to compare the shear stresses at the lower edge of the roller (n = 0)
with the simplified expression which is obtained if we assume hydrostatic pressure in
the roller

τr = ρgη tan αs/ cos αs, (5.23)

where αs is the surface slope. This expression has been suggested as an estimate for σns
(Deigaard & Fredsøe 1989), and is frequently used in the literature. The comparison
with (5.12) for n = 0 and with the measurements along the dividing streamline are
shown in figure 13.

We see that over most of the roller, (5.12) gives a good prediction of the shear
stress σns along the dividing streamline. The only point where there is a significant
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deviation is the first measuring point in each jump where (5.12) tends to overpredict
the magnitude of σns.

On the other hand, we also see that (5.23) overpredicts σns by as much as a factor
of 2 in particular in the second half of the roller.

Finally, figure 14 shows that, measured in terms of ρU2
1 versus x/`r , the shear

stresses along the dividing streamline in the three hydraulic jumps considered, largely
exhibit the same variation over the length of the roller. This similarity is equivalent
to the similarity found for the variation of the vertical roller thickness e (see figure 7)
and may of course not apply for jumps with significantly larger F values.

6. Vorticity, stresses, and eddy viscosity
It is also of significant interest to analyse the development of the vorticity of the

flow. The vorticity

w =
∂u

∂z
− ∂w

∂x
, (6.1)



48 I. A. Svendsen, J. Veeramony, J. Bakunin and J. T. Kirby

& = 1.38

–0.14 0.25 0.5 0.75 1

& = 1.46

–0.1 0.17 0.33 0.5 0.67 1

& = 1.56

–0.25 0.50.33 1

x/Fr

0.04

0

0.035

0

0.06

0.05

0.04

0.03

0.02

0.01

σns

ρU2
1

0.03

0.025

0.02

0.015

0.01

0.005

0

0.03

0.02

0.01

0.67

σns

ρU2
1

σns

ρU2
1

Figure 13. Variation of σns/ρU
2
1 (vertical) versus x/`r along the lower limit of the roller (at

n = 0): ◦, measurements (interpolated values); ×, obtained from (5.12); +, from (5.23).

is obtained from the curve-fitted measured velocities. Since measurements were ob-
tained along only a few verticals, it requires some care to determine ∂w/∂x. However,
as figure 4 shows, the vertical velocities are small and vary relatively slowly in the x
direction which is also qualitatively confirmed by a comparison of figures 3 and 4. It
was found that the values of ∂w/∂x were negligible in comparison to ∂u/∂z. Figure
15 shows the vorticity along the verticals where measurements were taken.

Qualitatively, the results confirm the patterns for the breaking waves behind a
hydrofoil found by Lin & Rockwell (1995) in those of their cases where the breakers
were strong enough that capillary effects were negligible. A quantitative comparison
is difficult, however, because generating conditions for the two flows are so different.
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It is clear that vorticity generation is initiated at the toe of the turbulent front where
the high-speed flow along the incoming free-surface streamline meets the fluid which
is slowly moving down along the surface of the roller. Because of the high speed, the
incoming flow seems to continue undisturbed over a short distance underneath the
roller. By careful observation, it can be seen that the first very short part of the roller
essentially floats on the incoming high-speed fluid over what seems to be a very thin
highly aerated layer where all the shear is located.

The momentum balance for the flow around the toe was discussed by Svendsen
& Madsen (1984) who pointed out that, in spite of the fact that with the described
picture of the flow the shear at the toe becomes theoretically infinitely large, the shear
stress must for dynamical reasons remain bounded at the toe (and in fact must go to
zero as e → 0). This can be accomplished by assuming that the effective (turbulent)
viscosity νt goes to zero faster than the shear. If we think of νt as being `

√
k, this is

in accordance with the fact that both the length scale and the kinetic energy must
start at zero values at the toe.

A short distance into the roller, the incoming flow becomes unstable and the mean
incoming streamline becomes the centre in a flow pattern that has resemblances of a
mixing layer (Peregrine & Svendsen 1978). As the mixing develops, the magnitude of
the fluctuations develop to a size that is comparable to the thickness of the roller and
start interacting with the free surface. This occurs in the central part of the roller and
that is undoubtedly the area where the strongest production of turbulence takes place.
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Figure 15. The vorticity distributions determined from the measurements plotted for the values of
x/h0 along the jump where measurements were taken.

It is interesting that along the streamline that divides the roller with recirculating
flow from the rest of the flow which essentially is unidirectional, the vorticity in all
three jumps seems to follow the same dimensionless variation. This is illustrated in
figure 16 which shows values of ω′ = ωh2ξ/U1 versus x/`r where `r is the roller
length. ω′ increases rapidly from the toe to a maximum which is reached about 10%
of `r into the roller. From there, the vorticity decreases almost linearly to the zero
value at the end of the roller where the dividing streamline meets the free surface.

To some extent, it is confirmed that the flow has many resemblances with a shear
layer positioned along the streamline. We see from figures 9 and 15 that immediately



The flow in weak turbulent hydraulic jumps 51

–0.2 0.40.2 1

x/Fr

0

5

0.6

ωh2ξ

U1

0 0.8

10

15

Figure 16. Dimensionless vorticity ω′ = ωh2ξ/U1 (vertical) versus x/`r along the lower limit of
the roller for ◦, F = 1.38; ×, F = 1.46; ∗, F = 1.56.

downstream from the toe of the roller, both the shear stresses and the vorticity are
maximum along the dividing streamline. Figure 16 also indicates that the strength of
the vorticity decreases over the roller length. Those features have similarities with the
characteristics of a shear layer with symmetry axis near the lower limit of the roller.
In a shear layer, the vorticity would spread symmetrically downward and upward by
diffusive mechanisms (mainly turbulent mixing). Spreading is also found to happen,
but not symmetrically. The turbulence above the dividing streamline is so strong that
the vorticity is spread over the entire roller region from the very beginning at the toe.
Furthermore, the fluid domain above is limited by the presence of the free surface (see
figure 15). The difference in diffusivity between the roller and the region below the
dividing streamline is probably why, towards the downstream end of the roller where
the lower limit of the roller bends upward toward the free surface, the maximum

values of both ω (figure 16) and ũ′w′ (figure 9) occur below the lower limit of the
roller and further downstream well below the surface (i.e. ‘inside’ the flow).

Eventually, sufficiently far downstream, the flow will attain the characteristics of a
(nearly) uniform open channel flow dominated by the bottom-generated turbulence
and friction. Note, however, from figure 15, that even at x/h0 = 8 this point of
equilibrium is not quite reached yet. There is still residual vorticity from the roller
and the bottom boundary layer has only spread over 40–50% of the full depth.

We also see that, although the results for the vorticity for the upper part of
the roller are based on the extrapolations of the curve-fitted velocity profiles, the
variations of ω over the roller are reasonable. In the interpretation, we have made
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Figure 17. The dimensionless eddy viscosity νt/(h1U1ξ
2) versus x/`r along the lower limit of the

roller for ◦, F = 1.38; ×, F = 1.46; ∗, F = 1.56.

the assumption that the gradient of the velocity and the value of the vorticity are
zero at the mean water surface. In reality, neither the velocity gradients nor the shear
stresses or the vorticities will be exactly zero at the mean water surface. A small
part of the deviation from this assumption would be due to the surface boundary
layer induced by the zero stresses at the instantaneous free surface. More importantly,
however, using the turbulent averaged mean water surface as surface boundary will
generate non-zero Reynolds contributions to the averages at the mean surface. The
problem was probably first discussed by Hasselmann (1971) and lately by Brocchini &
Peregrine (1996). Unfortunately, the available measurements do not provide sufficient
information to analyse the details. It is expected that the contributions are relatively
insignificant in comparison to the stresses and vorticity in the lower part of the roller.

It is also seen that, in spite of the smooth bottom, the bottom boundary layer
produces a fair amount of vorticity, and in fact also a fair amount of turbulent
kinetic energy.

Finally, if the shear stress at the bottom of the roller scale as τ/ρU2
1 , and the

vorticity is close to ∂u/∂z and scales as ωh2ξ/U1, it would be expected that the eddy
viscosity along the roller bottom would scale as νt/(h1U1ξ

2). Figure 17 shows a plot
of νt/(h1U1ξ

2) versus x/`r along the lower edge of the roller. It is clear that there is
considerably more scatter than in the two previous plots and more data would be
useful.

It is also possible from the measurements of velocities and shear stresses to obtain
an estimate for a value of the eddy viscosity νt over the entire vertical at each x where
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Figure 18. The eddy viscosity variations determined from the measured shear stresses and the
calculated vertical velocity gradients.

measurements were taken. Assuming νt is defined by the equation τzx = ρνt∂u/∂z, we
obtain the values shown in figure 18 for νt. To avoid the singularities for τ = 0 in the
computation for this figure, we set νt = 0 when τ becomes sufficiently small.

7. The angular momentum balance
Recently, the angular momentum balance for hydraulic jumps was discussed in H95.

It is obvious from the outset that just as linear momentum is conserved, so is angular
momentum. The question is what are the major contributions to the angular momen-
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tum balance. It turns out that, in particular, the contribution from non-hydrostatic
pressures is an important element of uncertainty in that balance. As mentioned in § 4,
H95 calculated that contribution by assuming that the vertical velocity everywhere
varied linearly from bottom to surface (see (4.12)). This assumption is not satisfied
inside the jump, and particularly not in the region where the effect of the vertical
velocities on the pressure distribution is most significant. In calculating the vertical
velocity they used the depth-averaged horizontal velocity.

These assumptions, however, made it possible to give a simple analytical expression
for the non-hydrostatic pressure which is given by (4.15) and through that for the
contribution of the vertical accelerations to the angular momentum balance. This
contribution comes from the pressure variation on the bottom. In order to balance
the angular momentum, however, H95 also assumed that the downstream horizontal
velocity in the jump varied linearly over depth with a constant negative vorticity,
Ω. They then determined the value of Ω required to satisfy the angular momentum
balance.

Under the normal hydraulics conditions of uniform flow, however, we would expect
that the velocity profile sufficiently far downstream of a hydraulic jump will eventually
develop to a form that is approximately represented by a logarithmic profile. Such a
profile has a distinctive positive vorticity (though not constant over depth). Hence, it
is obvious that the analysis of H95 does not apply to such conditions.

The experiments conducted by H95 to verify their analysis were for a bore propagat-
ing into quiescent water. However, an assumption of a constant vorticity downstream
would not be a reasonable assumption for that flow situation either. With virtually no
disturbance from the bottom-generated turbulence, the vorticity generated in a bore
would still retain a maximum around the level of the lower edge of the roller. As we
move downstream this concentration of vorticity would diffuse upward toward the
surface and downward toward the bottom. In fact, figure 15 can give a reasonable
estimate of what happens in a bore if we disregard the bottom-generated vorticity
in that figure, because (apart from the bottom boundary layer) vorticity is invariant
to the coordinate transformation that changes the hydraulic jump to a bore. The
following analysis is based on the measurements and analysis that are described in
the earlier sections of the paper. For the angular momentum A around a point in the
bottom (arbitrary, but for clarity chosen at x1 at h = h1) we obtain

A(x) =

∫ h1

0

(p+ ρu2)z dz −
∫ h(x)

0

(p+ ρu2)z dz −
∫ x

x1

[p− ρgh(x)]x dx

+

∫ h(x)

0

ρ(uw + ũ′w′)x dz, (7.1)

and the expectation would be that A ≡ 0 for all x. In the expression (7.1), the pressures
along the vertical sections at 1 and 2 are determined from (4.11) and the values of
uw and u′w′ are also determined directly from the measurements along the verticals.
The pressure p along the bottom in the third integral is evaluated by the procedure
described in § 4 in which spline-fits are used to interpolate between the x-value for
which detailed measurements were made.

For illustration, the balance described by (7.1) is evaluated for all the vertical
sections out to x/h1 = 8, and the results are shown in figure 19 for all three jumps.

We first notice that even at the section at x/h1 = 8 the velocity profile still has
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Figure 19. Contributions from the terms in (7.1) to the angular momentum balance plotted for
the values of x/h0 along the jump where measurements were taken. The vertical axis has been
normalized by (U1h1)2/2. O,

∫
h1
u2z dz; �, ∫

h1
pz dz; +,

∫
h(x)

u2z dz; ×,
∫
h(x)

pz dz; 4,
∫
h(x)

uvx dz; ◦,∫
x
pbx dx; •, A, the total angular momentum at each section.

not developed to the logarithmic equilibrium profile that is expected ‘far downstream’
(see figure 2).

Secondly, figure 19 shows that all the terms in (7.1) give significant contributions
to the angular momentum balance except the vertical shear stresses at the right-hand
section at x. However, those shear stresses are included in the balance since they are
also non-zero in the logarithmic profile far downstream. It is therefore evident that for
sufficiently large x-values, they will eventually become important, and, as can readily
be certified, they are an important component in the angular momentum balance for
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steady uniform flow in a rectangular channel. Note also that the contribution from
the deviation from hydrostatic pressure on the bottom is non-negligible.

It is obvious that the final result for A(x) is formed as a small (ideally zero) difference
between several large numbers. It is therefore not so surprising that, in spite of all
efforts, the total angular momentum A is not quite zero. Some of the reasons for
that are probably inaccuracies in the measurements, however small, including the
measurements of the surface elevation in the roller region. Some are inaccuracies
in the spline interpolation procedure we have had to use for the non-hydrostatic
contribution to the pressure. As mentioned earlier, we suspect that our estimates
of this term are less accurate than the other terms. In all, however, the analysis is
expected to show a reasonably accurate picture of the contributions to the angular
momentum balance.

8. Conclusions
Detailed LDV-measurements of the flow in three turbulent hydraulic jumps have

been analysed. It is found that deviations from uniform velocities and hydrostatic
pressure distributions give important contributions to the horizontal momentum
balance. At the surface, a model for the flow in the roller gives good agreement
with measured stresses and it is shown that results from the simpler model presented
by Deigaard & Fredsøe (1989) are misleading. The distribution of vorticity and
shear stresses inside the jump give qualitative confirmation of the hypothesis that
the breaking resembles a shear-layer but also clearly illustrate the deviations from
the flow in ordinary shear layers. Finally, the angular momentum balance has been
analysed and it is shown that the assumptions made in H95 do not hold. It is found
that dimensionless forms of a number of the variables in the jumps, such as the
thickness of the roller, the shear stress, the vorticity, and the eddy viscosity along the
lower limit of the roller have shown variations that are independent of the Froude
number.

This work was funded by the National Science Foundation under grant OCE-
9203277, and from Office of Naval Research contract N00014-98-1-0521.
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